Fast Hierarchical Learning for Few-Shot Object Detection

Yihang She, Goutam Bhat, Martin Danelljan, Fisher Yu
IROS 2022

Fast Hierarchical Learning for Few-Shot Object Detection

Abstract

Transfer learning based approaches have recently achieved promising results on the few-shot detection task. These approaches however suffer from “catastrophic forgetting” issue due to finetuning of base detector, leading to sub-optimal performance on the base classes. Furthermore, the slow convergence rate of stochastic gradient descent (SGD) results in high latency and consequently restricts real-time applications. We tackle the aforementioned issues in this work. We pose few-shot detection as a hierarchical learning problem, where the novel classes are treated as the child classes of existing base classes and the background class. The detection heads for the novel classes are then trained using a specialized optimization strategy, leading to significantly lower training times compared to SGD. Our approach obtains competitive novel class performance on few-shot MS-COCO benchmark, while completely retaining the performance of the initial model on the base classes. We further demonstrate the application of our approach to a new class-refined few-shot detection task.

Paper

Citation

@article{yihang2022,
  title={Fast Hierarchical Learning for Few-Shot Object Detection},
  author={She, Yihang and Bhat, Goutam and Danelljan, Martin and Yu, Fisher},
  journal={IROS},
  year={2022}
}

Related


Frustratingly Simple Few-Shot Object Detection

Frustratingly Simple Few-Shot Object Detection

ICML 2020 State-of-the-art few-shot detection method with backpropagation learning.


Few Shot Object Detection via Feature Reweighting

Few Shot Object Detection via Feature Reweighting

ICCV 2019 We develop a few-shot object detector that can learn to detect novel objects from only a few annotated examples.


Tracking Every Thing in the Wild

Tracking Every Thing in the Wild

ECCV 2022 We introduce a new metric, Track Every Thing Accuracy (TETA), and a Track Every Thing tracker (TETer), which performs association using Class Exemplar Matching (CEM).


LiDAR Snowfall Simulation for Robust 3D Object Detection

LiDAR Snowfall Simulation for Robust 3D Object Detection

CVPR 2022 Oral We propose a physically based method to simulate the effect of snowfall on real clear weather LiDAR point clouds.


Robust Object Detection via Instance-Level Temporal Cycle Confusion

Robust Object Detection via Instance-Level Temporal Cycle Confusion

ICCV 2021 We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.


TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning

TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning

CVPR 2019 We propose Task-Aware Feature Embedding Networks (TAFE-Nets) to learn how to adapt the image representation to a new task in a meta learning fashion.